Search results

Search for "lipid membranes" in Full Text gives 14 result(s) in Beilstein Journal of Nanotechnology.

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Numerical analysis of vibration modes of a qPlus sensor with a long tip

  • Kebei Chen,
  • Zhenghui Liu,
  • Yuchen Xie,
  • Chunyu Zhang,
  • Gengzhao Xu,
  • Wentao Song and
  • Ke Xu

Beilstein J. Nanotechnol. 2021, 12, 82–92, doi:10.3762/bjnano.12.7

Graphical Abstract
  • short tip that can be considered as a rigid body vertically attached to the tuning fork prong. However, soft biological samples, such as living cells and lipid membranes [13][14][15], must be immersed in a liquid environment to maintain their original properties. In order to avoid immersion of the
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2021

Mechanical and thermodynamic properties of Aβ42, Aβ40, and α-synuclein fibrils: a coarse-grained method to complement experimental studies

  • Adolfo B. Poma,
  • Horacio V. Guzman,
  • Mai Suan Li and
  • Panagiotis E. Theodorakis

Beilstein J. Nanotechnol. 2019, 10, 500–513, doi:10.3762/bjnano.10.51

Graphical Abstract
  • ., proteins [1], nucleic acids [2] and lipids [3]). Lipid membranes, viral capsids, and biological fibrils are common examples of large complexes that pose significant challenges for all-atom simulations. For example, the time scales of various biological processes are in the range from 10−6 to 10−3 s, and
PDF
Album
Full Research Paper
Published 19 Feb 2019

Liquid-crystalline nanoarchitectures for tissue engineering

  • Baeckkyoung Sung and
  • Min-Ho Kim

Beilstein J. Nanotechnol. 2018, 9, 205–215, doi:10.3762/bjnano.9.22

Graphical Abstract
  • , lamellar lipid membranes can be used as a synthetic model system of stratum corneum, the outermost layer of epidermis, for evaluating the transdermal permeation efficiency of drug molecules in vitro [110], which has an implication in skin disease study [111]. Moreover, topical formulations of LC
PDF
Album
Review
Published 18 Jan 2018

Phospholipid arrays on porous polymer coatings generated by micro-contact spotting

  • Sylwia Sekula-Neuner,
  • Monica de Freitas,
  • Lea-Marie Tröster,
  • Tobias Jochum,
  • Pavel A. Levkin,
  • Michael Hirtz and
  • Harald Fuchs

Beilstein J. Nanotechnol. 2017, 8, 715–722, doi:10.3762/bjnano.8.75

Graphical Abstract
  • arrays we selected lipid–protein pairs applied in previous settings: Biotin-Cap-PE and streptavidin labeled with Cy3 dye (STV-Cy3) as a simple protein model; and DNP-cap-PE with anti-DNP IgE as a model for allergen/antibody recognition. These interactions are well-characterized for biomimetic lipid
  • membranes on flat supports [16][17] and there, interactions occur without any special requirements, like pretreatment with co-activating molecules. For a more complex protein, the lipid/HEMA-EDMA substrate system was also characterized for the binding properties of biotinylated androgen receptor (ARbiot
PDF
Album
Full Research Paper
Published 27 Mar 2017

Surface-enhanced Raman scattering of self-assembled thiol monolayers and supported lipid membranes on thin anodic porous alumina

  • Marco Salerno,
  • Amirreza Shayganpour,
  • Barbara Salis and
  • Silvia Dante

Beilstein J. Nanotechnol. 2017, 8, 74–81, doi:10.3762/bjnano.8.8

Graphical Abstract
  • Raman measurements on bare thiols and on their combinations with lipid membranes, namely MbA with DOTAP and AT with POPC/POPS. The enhancement factor was estimated to be 500 to 1000 on tAPA–Au with respect to the flat Au surface and to the silicon substrate. The chemisorption of thiols and lipids was
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2017

On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles

  • Claudia Messerschmidt,
  • Daniel Hofmann,
  • Anja Kroeger,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2016, 7, 1296–1311, doi:10.3762/bjnano.7.121

Graphical Abstract
  • lipid membranes and enter cells [8][9][10]. For example, Mu et al. found uptake of SiNPs (14 nm diameter) even in cells that were kept at 4 °C, a temperature at which active processes are conceived to be significantly suppressed [9]. In subsequent TEM analysis they observed particles freely in the
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2016

Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

  • Matthias Bieligmeyer,
  • Franjo Artukovic,
  • Stephan Nussberger,
  • Thomas Hirth,
  • Thomas Schiestel and
  • Michaela Müller

Beilstein J. Nanotechnol. 2016, 7, 881–892, doi:10.3762/bjnano.7.80

Graphical Abstract
  • lipid membranes with high fidelity and selectivity. In the field of biotechnology, they are particularly attractive for single-molecule DNA sequencing [1][2][3][4][5] and stochastic sensing of ions and macromolecules [6][7][8][9][10]. The well-defined dimensions of the protein pores furthermore offer a
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2016

Comparison of the interactions of daunorubicin in a free form and attached to single-walled carbon nanotubes with model lipid membranes

  • Dorota Matyszewska

Beilstein J. Nanotechnol. 2016, 7, 524–532, doi:10.3762/bjnano.7.46

Graphical Abstract
  • aspect in terms of side effects of the drug. Keywords: daunorubicin (DNR); 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE); drug carriers; model lipid membranes; single-walled carbon nanotubes (SWCNTs); Introduction Daunorubicin (DNR) is an anthracycline antitumor drug, which finds application
PDF
Album
Supp Info
Full Research Paper
Published 08 Apr 2016

Intake of silica nanoparticles by giant lipid vesicles: influence of particle size and thermodynamic membrane state

  • Florian G. Strobl,
  • Florian Seitz,
  • Christoph Westerhausen,
  • Armin Reller,
  • Adriano A. Torrano,
  • Christoph Bräuchle,
  • Achim Wixforth and
  • Matthias F. Schneider

Beilstein J. Nanotechnol. 2014, 5, 2468–2478, doi:10.3762/bjnano.5.256

Graphical Abstract
  • models and indicate that these models have to be extended in order to capture the interaction between nanomaterials and biological membranes correctly. Keywords: cells; endocytosis; engulfment; fission; gel phase; giant unilamellar lipid vesicles (GUV); lipid membranes; liquid phase; nanoparticle
  • attention so far is the mutual interplay of the adsorption behavior of nanoparticles and the phase state of membranes. In [29], for example, it was shown that the phase transition temperature of lipid membranes changes upon the interaction with silica nanoparticles. Our own research group recently found a
  • -induced phase separation in the mixed lipid membranes used. As shown earlier, phase separation can trigger budding and fission processes [43][44]. Finally, one should be aware of the fact that very small particles tend to cluster before an uptake into vesicles [27][28]. Thus, the effective radius being
PDF
Album
Full Research Paper
Published 23 Dec 2014

Nanobioarchitectures based on chlorophyll photopigment, artificial lipid bilayers and carbon nanotubes

  • Marcela Elisabeta Barbinta-Patrascu,
  • Stefan Marian Iordache,
  • Ana Maria Iordache,
  • Nicoleta Badea and
  • Camelia Ungureanu

Beilstein J. Nanotechnol. 2014, 5, 2316–2325, doi:10.3762/bjnano.5.240

Graphical Abstract
  • could open new perspectives for biomedical and biotechnological applications. The increased interest in use of phospholipids is due to the fact that they are basic structural components of biomembranes and artificial lipid membranes (liposomes). Liposomes are spherical, soft-matter vesicles composed of
  • one or more lipid membranes (called lamellae) separated by aqueous compartments [22], with the structure of their lipid bilayers resembling that of cell membranes. In this work, we present the preparation of complex biocomposites based on liposomes and carbon nanotubes. Chlorophyll a is used as a
  • lipid bilayers (below 41 °C), high values of anisotropy and low emission fluorescence intensities of Chla inserted into lipid membranes can be observed due to the fluorescence quenching of Chla in a more rigid environment. The cholesterol-containing samples exhibited high anisotropy and the fluorophore
PDF
Album
Full Research Paper
Published 02 Dec 2014

Model systems for studying cell adhesion and biomimetic actin networks

  • Dorothea Brüggemann,
  • Johannes P. Frohnmayer and
  • Joachim P. Spatz

Beilstein J. Nanotechnol. 2014, 5, 1193–1202, doi:10.3762/bjnano.5.131

Graphical Abstract
  • various such integrins have been studied by incorporating the proteins into lipid membranes. These proteolipid structures lay the foundation for the development of artificial cells, which are able to adhere to substrates. To build biomimetic models for studying cell shape and spreading, actin networks can
  • also creates a stable linkage between integrin and the cytoskeletal protein actin. Hence, these three proteins are important candidates to be incorporated into minimal cells, which mimic cell adhesion and shape. 2. Integrin reconstitution into lipid membranes Membrane proteins and their specific impact
  • growth of cell adhesion domains, which play an important role in mechanosensing of living cells [44]. In a study by Sinner et al. the integrins αVβ3 and α1β1 were incorporated into planar lipid membranes, which were obtained by vesicle spreading. With surface plasmon-enhanced fluorescence spectroscopy
PDF
Album
Review
Published 01 Aug 2014

Large-scale analysis of high-speed atomic force microscopy data sets using adaptive image processing

  • Blake W. Erickson,
  • Séverine Coquoz,
  • Jonathan D. Adams,
  • Daniel J. Burns and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2012, 3, 747–758, doi:10.3762/bjnano.3.84

Graphical Abstract
  • of lipid membranes shown in Figure 7. This residual turn-around ripple can be seen on the right-hand side of the images in the middle row. The turn-around ripple appears on the right side of the image because retrace images are being shown. This residual error can be corrected by using an additional
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2012

Microfluidic anodization of aluminum films for the fabrication of nanoporous lipid bilayer support structures

  • Jaydeep Bhattacharya,
  • Alexandre Kisner,
  • Andreas Offenhäusser and
  • Bernhard Wolfrum

Beilstein J. Nanotechnol. 2011, 2, 104–109, doi:10.3762/bjnano.2.12

Graphical Abstract
  • locally anodizing aluminum membranes under flow conditions. Localized anodization allows the generation of stable patches of nanoporous alumina, which can be used in microfluidic experiments. Lipid membranes were grown on the nanoporous patches inside the microfluidic system and the process of membrane
PDF
Album
Full Research Paper
Published 11 Feb 2011
Other Beilstein-Institut Open Science Activities